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Magnetohydrodynamic flow of a viscous fluid 
past a sphere 

By RICHARD VAN BLERKOM 
International Business Machines Corporation 

(Received 15 December 1959) 

The flow of a viscous incompressible electrically conducting fluid past a sphere 
is studied; the uniform ambient flow field is colinear with the ambient uniform 
magnetic field. The force exerted on the sphere is computed for various con- 
ductivities and Reynolds numbers; of particular interest is the distinction in 
behaviour between the flow with ambient particle speed greater than ambient 
Alfvh speed and that with particle speed less than Alfven speed. 

1. Introduction 
The flow of a viscous incompressible fluid past an obstacle at low Reynolds 

number has been the subject of many investigations. The rigorous analysis of this 
problem requires the solution of the non-linear Navier-Stokes differential equa- 
tions. Stokes (1945)) Oseen (1910), and Lewis & Carrier (1949) have formulated 
linear problems whose relevant solutions are good approximations to the observed 
physical facts. The linearized problems have been solved for flow past a sphere by 
Lamb (1945) and by Goldstein (1929) and the drag on the sphere has also been 
found. We shall use the same methods of linearization to study the flow of a 
viscous, incompressible, and electrically conducting fluid past an obstacle when 
the magnetic field and velocity are constant and parallel far from the obstacle. 
A detailed solution will be obtained for a sphere and a method of solution for 
other geometries will be indicated. The modification introduced in a uniform flow 
by an externally applied point force will be described. 

_ _  . _ _ _ ~ -  

2. The flow past a sphere 
The magnetohydrodynamic flow of an incompressible viscous electrically 

conducting fluid of constant properties is governed by Maxwell’s equations and 
the laws of conservation of mass and momentum. In m.k.s. units these equations 
take the form 

= - Vp’ + p v V ~ ’  +pj x HI, 

&vV’ = 0, 

curlH’ = j, divH’ = 0, 
curlE = 0. 

These are supplemented by the constitutive relation 

j = c[E+pV’ x H’]. (2.5) 
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Here, V' is the fluid velocity, H' is the magnetic field, E is the electric field, Q is 
the electrical conductivity, p is the mass density, p is the magnetic permeability, 
and u is the kinematic viscosity. The differentiations are taken with respect to 
the physical variables x', y', z'. 

The differential equations can be put in a dimensionless form by introducing 
the following substitutions: 

V' u ,  p -  a p f ,  x = -  5' y = -  Y' z = -  z' and H = - .  H' 

HO 
V = -  

PVU a '  a' a 

Here, U is a characteristic velocity of the problem, Ho is a characteristic magnetic 
field, a is a characteristic length and the differentiations are with respect to 
x, y and z. In  the problems we are considering U is the undisturbed velocity 
and Ho is the magnetic field far from the obstacle. For steady-state problems, 
W/at = 0 and (2.1) to (2.5) take the form 

(2.6) 

divv  = 0, (2.7) 

R(V.V)V = -Vp+V2V+----jxH, pH0a2 
P Y  u 

a 
curlH = - j, divH = 0, 

HO 
curlE = 0, 

j = Q{E+~UH,V x H}. 

If we substitute (2.8) into (2.6) and use the vector identity 

(cur1H)xH = (H.V)H-&V(H.H), 
we obtain 

M2 
R(V. V) V = - Vp, + V 2 V + z  (H. V) H, 

where 
111 

p, =p+-H.H. M2 

2Rm 

(2.9) 
(2.10) 

(2.11) 

(2.12) 

Here, R, is the magnetic Reynolds number given by R, = Uapc and M is the 
Hartmann number given by M = pH,a(a/pu)*. The ratio Rm/R is a measure of 
the relative importance of magnetic and viscous effects. 

If we take the curl of (2.10) and make use of (2.7) and (2.9) and the vector 

( 2 . 1 3 ~ )  identities 
curl(cur1H) = V(divH)-V2H = -V2H 

and curl (V x H) = (H . V) V - (V . V) H + V(V . H) - H(V . V), (2.13 b) 

we obtain V2H = -R,{(H.V)V-(V.V)H}. (2.14) 

We shall confine our attention to problems in which the fluid flows past an 
axially symmetric obstacle in an otherwise unbounded domain with an ambient 
velocity iV, and magnetic field iH, which are uniform and directed along the 
symmetry axis of the object. Chester (1957) has treated this problem following 
a Stokes-like analysis; he computed the drag on a sphere to be 

D = D,{1 ++M+&M2-&M3+O(M4)},  (2.15) 

where D, = 6npuaU. (2.16) 
28 Fluid Mech. 8 
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We shall invoke an analysis similar to that of Oseen, although the motivation 
stems from the Carrier-Lewis approximation technique as used by Greenspan & 
Carrier (1959). In  this technique one anticipates that the mathematical model 
retains significance when each of the undifferentiated quantities in the convective 
terms of equations (2.11) and (2.14) is replaced by an appropriate average which 
is taken to be some fraction of the free-stream values. In  this paper, we shall 
take these functions to be unity, so that we shall treat a mathematical problem 
which is identical with that which would arise if the Oseen philosophy were 
followed. It should be noted, however, that the equations which would be 
obtained with a more appropriate choice of these averages would have solutions 
which are related to those obtained here by the formulas 

where Cli, C,i, C3i, C,i are the quantities which replace V, H, H, V, respectively, 
as they appear in (2.11) and (2.14). 

With the foregoing, (2.11) and (2.14) become 

M 2  aH 
0 2v+--, 

av R- = -Vp + V  ax R, ax 
1 a 

-V2H = -(H-V). ax 
Rm 

(2.18) 

(2.19) 

Since the problem has been linearized superposition may be used; we write 
V = i + v and H = i + h. The boundary conditions require that v and h tend to 
zero as the distance from the obstacle goes to infinity, that v = - i at the obstacle 
surface, and that ht and ph, be continuous at  the obstacle surface. Here, h, and 
ht are, respectively, the component of magnetic field that is normal to the 
obstacle and the component that is tangent to the obstacle. 

Equations (2.18) and (2.19) can be simplified in the following way. We define 

a 
V, = v - 2  h, 

Rnl 
a 

V, = V-3 h, 
R,, 

(2.20) 

(2.21) 
... 

where the a! are the roots of 

a2+(R-R,,Ja-M2 = 0. (2.22) 

We then obtain 

av R, F2 = - Vpo + V’V,, 
X 

(2.23) 

(2.24) 

where Ri = R + a!. Each of these equations is identical with that encountered 
in the classical Oseen treatment of viscous fluid problems and our investigation 
will parallel closely that of Oseen. 
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It is easily seen that 

(2.25) 

(2.26) 

(2.27) 

1 

h = L  R, - R, LV1 - v21’ 

divv, = divv, = 0, 

Rz-R, 

and that the ‘modified’ Reynolds numbers Ri are the roots of 

R:- (R+ R,) R,+ (RR,- M Z )  = 0, 
and are always real. 

We define 

(2.28) 

(2.29) 

and note that, for /3 < 1, each of the ‘modified’ Reynolds numbers is positive, 
but for /3 > 1 there is a positive and a negative ‘modified’ Reynolds number. 
These two cases will be considered separately. When /3 = 1 the ‘modified’ 
Reynolds numbers are R + R, and zero. 

It is convenient to follow Lamb (1945) and introduce the potential xi such that 

an(+) 6 = -Xji+R;lgradZj+grad C An.-.  
n=O 3 ax* 

In order that (2.23) and (2.34) be satisfied it is necessary that 

Furthermore, 

(2.30) 

(2.31) 

(2.32) 

The axially symmetric solution to (2.31) that vanishes at infinity is 

m 

n = O  
(2.33) 

- xi = e3(RJz C Bjn xn( I R,I r )  Pn(cos 0), 

where 8 is the polar angle measured in spherical co-ordinates ( r ,  0, w )  and 

(2.34) 

Here, K ,  is the modified Bessel function of the second kind. 
It follows from (2.8)’ (2.26), (2.30) and (2.31) that the current paths are circles 

which have their centres on the x-axis. From the axial symmetry of the problem, 
equation (2.10)’ and Kirchhoff’s law, we deduce that E = 0 everywhere in the 
fluid. Inside the spherical obstacle the electric and magnetic fields are governed 
by Maxwell’s equations and the charge conservation equations which, in m.k.s. 
units, are given by 

a 
curl hi = - ji, div hi = 0, ji = aiEi,\ 

HI 
curlEi = 0,  divciEE, = 0. 

(2.35) 

28-2 
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Since the electric field vanishes in the fluid and on the boundary of the sphere, 
it follows that Ei = 0 and that 

m 

hi = -grad I: BnrnPn(cos6). 
n= 0 

(2.36) 

We now follow the method of Goldstein (1929) and write the boundary con- 
ditions ctt the surface of the sphere (r = 1) in the form 

The functions Xn,m and Yn,rn are given by 

m(2n+ 1 )  (Zm)! (2n)!  
X n , m  = n+ 1 (2n+2m)!  

n+m--l 3(n- I )  m - 1  2n+2m-1$n+rn-, 1.3.5 ( n - l ) ( n - 2 )  +- ~- 
~ ( $ + ( 2 1 L - - i s n  n+m t 2 !  ( 2 n - 1 ) ( 2 n - 3 )  

(m - 1 )  (m - 2 )  (2% + Zm - 1 )  (2% + 2m - 3 )  $n+m--5 _____ 
t X 

( 2 m - 1 ) ( 2 m - 3 )  ( n + m ) ( n + m - 1 )  

1 . 3  ...( 2 r + l )  ( n - 1 )  ...(n- r )  (m- 1 )  ... ( m - r )  
+ ... + r !  ( 2 n - 1 )  ... ( 2 n - 2 r + l ) ( 2 m - l )  ... ( 2 m - - 2 r + l )  

(2n+ 2m-  1 )  . . . (2n+ 2m + 2% + 1)  $n+m-Zr-l 

E 
X 

(n+m) ... (n+m-r+  1 )  
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and 

y n , m  

1 .3  n(n-1) m(m-1) (2n+2m+1)(2n+2m-1) +-- - @.n+m-d 2 !  (2n - 1) (2n - 3) (2.2 - 1) (2m - 3) (n + m) (n + m - 1) 

1 . 3 . 5  ... ( 2 r -  1) n(n- 1) ... ( n - r +  1)  + ... +-- - 
r! pn-i)(.2n--3) ... ( zn- -r+ i )  

m(m- 1) ... (m--r+ 1) 
x -. (2m- 1) (2m-3) ... (Zm-Zr+ 1) 

(2n+2m+1)(2n+2m-l) ... (Zn+2m--r+3) 
X (n+m) (n+m-  1) ... (n+m--r+l) @.n+m-,r 

n(n- 1) ... (n-m+ 1) 
+ (en- 1) (2n - 3) . . . (2n - 2m + 1) 

+ ... 

where 

(2.44) 

(2.45) 

Equation (2.37) is the condition v,. = - cos 8, equation (2.38) is the condition 
ve = sine, equation (2.39) expresses the continuity of ,uhr and equation (2.40) 
represents the continuity of he. The infinite system of equations is approximated 
to order q by considering (2.37) for n = 0,1, ..., q ;  (2.38) for n = 1, ..., q ;  (2.39) 
for n = 0,1, ..., q -  1; and (2.40) for n = 1,2, .. ., q. This yields 4q+ 1 equations 
for the 4q + 1 unknowns A,, A,, . . ., A,; B,,, B,,, .. ., Bl,-,; B2,, B,,, .. ., B2,-,; 
D,, D,, . . . , D, with the rest of the A,, Bfn-,, D ,  taken as zero. Numerical results 
for the constants were obtained using a second-order approximation and 
several values of the ‘modified’ Reynolds number. For small ‘modified’ Rey- 
nolds numbers it was found that A,, A,, B,,, B,, and D, are all much greater than 

The drag D on a solid obstacle is obtained by applying Newton’s second law 
of motion to the fluid surrounding the obstacle and bounded by a surface S 
which is everywhere far from the obstacle. The total force exerted on the fluid 
within S is the sum of the viscous force exerted by the obstacle ( - D), the force 
exerted by the fluid outside S, plus the ponderomotive force. 

We are able to show by direct calculation from the results of 5 2 that for small 
‘modified’ Reynolds numbers the ponderomotive force {,Mi(curl H) x H} is 
small compared with the viscous forces vQ2V in all parts of the fluid provided that 
,u = ,us. This restriction on the permeabilities is necessary so that near the sphere 
H w i. Hence in computing the drag we neglect the body force. This calculation 
can be carried out by an extension of the process used by Lamb in showing for 
small Reynolds number that (curl V) x V may be neglected compared with viscous 
forces in a non-conducting fluid. 

A,, Bll, B,, and D,. 
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We continue in a manner similar to that used by Goldstein (1929)  and obtain 

1.1 

1.0 

For flow past a spherical object we obtain 

- 

- 

I I 1 1 

(2.46) 

(2 .47)  

The first-order solution for small 'modified' Reynolds numbers yields 

( 2 . 4 8 ~ )  
67r 

CD E x ( 1 + $ R + O ( R q ) )  (p  < I), 

(2.48 b )  

Numerical values were obtained for C, at R = 4 for several values of R, and 
p, where all terms up to those of order Rq were retained and it was found that 
( 2 . 4 8 ~ ~ )  and (2 .483)  were changed by about 1 %. These results are plotted in 
figure 1. This does not mean that the error in these formulas for CD is as small as 
1 yo, since this error is dependent on the accuracy of the linearization. 

In order to obtain additional insight, the results of $ 2  were used to obtain 
numerical values for the 2-components of particle velocity and magnetic field 
along the lines ( O , O , z ) ,  ( 5 , 0 , 2 )  and, for the subsonic case, ( - 5 , O , z ) ,  with 
R = R, = 0.25 and ,u = ,us. The results are shown in figure 2.  It was found that 
both the particle velocity and magnetic field are independent of p for 0 < p < 1. 
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I n  fact, in both the supersonic and the subsonic case (p = 2 ) )  the magnetic field 
was found to be small (less than 0.1) and hence was not plotted. If the sphere has 
a permeability different from that of the fluid, the magnetic field is distorted 
near the sphere but the effects are unimportant elsewhere. 

As was mentioned previously, Chester (1957) extended the Stokes-type 
approximation for the flow past a sphere. This is equivalent to the linearization 
we have used, if the special case R and R, -+ 0, /3 large and ,u = ,us is considered. 
This yields ‘modified’ Reynolds numbers of & M and a drag, particle velocity 
and magnetic field which are all in agreement with Chester’s results. 

FIGURE 2. x-component of particle velocity versus position; R = R, = 0.25. The positions 
of the origins of the three graphs indicate the values of 5 a t  which u(z, y) is plotted as a 
function of y. -, /3 < 1; ---, /3 = 2. 

3. The point-force problem 
We shall discuss here the flow field and magnetic field which arise when an 

externally applied point force acts on a fluid which otherwise would have 
uniform velocity and magnetic field. Such a description is of interest because it 
will be a major contribution to the description of the flow past objects such as 
that considered in 5 2, and because it can be displayed in closed form with easy 
interpretation. 

The governing equations are (2.14) and (2.11) modified only by the inclusion 
of the point-force contribution. That is, 

M2 
R(V. V) V +  Vpo- V2V+- (H. 0)  H = -3’S(r) i, 

Rnl 
with S(r) = S(x-0 ,y -0 , z -0) ,  

where S(r) is the Dirac delta function and - FS(r) i is the force per unit volume 
applied a t  the origin. The equations of motion are put into dimensionless form 
and linearized, and linear combinations are taken in the same manner as in $ 2 .  
In  this problem we define the characteristic length by 
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The exact solution to the linear problem is found to be 

and 
3 a  1 

Po = +&. (3.4) 

Expressions for v and h are obtained from (2.25) and (2.26). We note that at  the 
origin the velocity becomes infinite as r-l and is directed along the positive 
x-axis, while h = 0. 

At this point it is appropriate to compare our results for /3 < 1 with those for 
/3 > 1. The wake for the magnetohydrodynamic flow is the region in which 
exp [ - + lRil r + S(Rj) x] is not small. In  the wake the particle velocity and mag- 
netic field vary as r-l far from the origin, while in the region outside the wake 
they vary as +. For 0 < /3 < 1, the wake appears near the positive x-axis. 
However, for /3 > 1 the wake appears not only near the positive x-axis, but also 
near the negative x-axis. 

We now find it convenient to turn our attention to the co-ordinate system in 
which the fluid is at rest at infinity. From (2.25), (2.26) and (3.3), it  follows that 
far from the origin at points outside the wake for /3 < 1 the velocity and magnetic 
field are as if due to a source located at  the origin and of strength 6mR,/RlR2. 
There is an equal inward flux along the wake near the x-axis. If /3 > 1, the 
magnetic field outside the wake is the same as that due to a sink at the origin, 
which is offset by concentrated outward flows near both the positive and the 
negative x-axes; the velocity is that which would be due to a sink equivalent to 
the magnetic field sink and, in addition, there is an inward flux near the positive 
x-axis, both of which are balanced by an outward flux along the negative x-axis. 
The results for /3 = 1 are obtained by considering what happens in the limit as 
/? -+ 1 - or 1 + . These limits yield the same conclusions. There is a net influx of 
particles near the positive x-axis which is balanced by a source at the origin. 
The essentially different behaviour for /3 < 1 and /3 > 1 may be explained by 
noting that, if /3 = 1, 

u = J(;) H,, (3.5) 

which is equal to the Alfvkn wave speed. Hence, forp < 1 the free-stream velocity 
is greater than the Alfvkn velocity and for /3 > 1 the free-stream velocity is less 
than the Alfvh speed. 

4. The infinite conductivity case 
We shall now discuss the flow past an obstacle of a fluid which has infinite 

conductivity. For cr -+ 00 (R, -+ 00) a possible solution to (2.7)5 (2.11) and (2.14) 
is h = v, which reduces the problem to the form 

v . v  = 0. (4.2) 
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These equations are identical with the equations of motion for a non-conducting 
fluid flow with Reynolds number R(l-,8) and pressurep,. For ,8 > 1, we deduce 
that the disturbance velocity is equivalent to the disturbance velocity due to the 
flow of a non-conducting fluid which, far from the obstacle, is in the direction 
of the negative x-axis and which has a Reynolds number R(P- 1). Hence, if 
we can satisfy the boundary conditions on the velocity in the problem in which 
there is no magnetic field, then we can satisfy the boundary conditions on velocity 
in the magnetohydrodynamical problem. The magnetic field satisfies the same 
boundary conditions at  the obstacle (H = 0) as the velocity as long as the obstacle 
has the same permeability as the fluid. The magnetic field inside the sphere is 
zero and the electric field is everywhere equal to zero by the same argument as 
in the previous section. For p = 1, (4.9) reduces to the equation obtained by 
Stokes for a non-conducting fluid. Naturally the suitability of this model can 
only be determined by the degree of agreement with experimental results. 

The work reported in this paper is an extract from a thesis submitted in 
April 1959 in partial fulfilment of the requirements for the degree of Ph.D. in 
applied mathematics at  Harvard University. 
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